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The excitation of standing edge waves of frequency QW by a normally incident 
wave train of frequency o has been discussed previously (Guza & Davis 1974; 
Guza & Inman 1975; Guza & Bowen 1976) on the basis of shallow-water theory. 
Here the problem is formulated in the full water-wave theorywithout making the 
shallow-water approximation and solved for beach angles p = n/ZN, where N is 
an integer. The work confirms the shallow-water results in the limit N 9 1, shows 
the effect of larger beach angles and allows a more complete discussion of some 
aspects of the problem. 

1. Introduction 
Guza & Davis (1974) discuss how standing edge waves may be formed on 

beaches through the instability of incident wave trains. They show, using the 
shallow-water approximation, that if a normally incident wave train of frequency 
w is perturbed by a small disturbance in the form of an edge wave of frequency &w, 
nonlinear coupling produces energy transfer and a growth of the edge-wave mode. 
The small perturbation theory predicts exponential growth, but when the 
amplitudes become comparable further nonlinear interaction terms become 
important and limit the final amplitudes. Recently Guza & Bowen (1976), again 
from the shallow-water approximation, have estimated the ultimate steady-state 
amplitudes and found good agreement with the experimental observations of 
Guza & Inman (1975). 

We studied the instability problem using the full water-wave theory, without 
making the shallow-water approximation. The original interest was in questions 
of the non-uniformity of the shallow-water approximation in the deep water 
away from the shore, since similar questions arose in earlier work on travelling 
edge waves (Whitham 1976; Minzoni 1976). I n  the present case the non- 
uniformities turn out to be mild, are easily corrected and do not affect the main 
results for small beach angles. However, more interestingly, we were able to 
include all the relevant interaction terms and trace the whole edge-wave develop- 
ment from initial instability to final steady state. Although the main results for 
small beach angles have in the meantime been covered by the shallow-water 
theory of Guza & Bowen, it is worthwhile to present an account of the full theory. 
It endorses the shallow-water estimates, shows the effect of larger beach angles, 
and relates the edge-wave amplitudes to given incoming waves at infinity (which 
can not be done directly in the shallow-water theory). 
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Guza & Bowen (1975) discuss the instability of incoming wave trains a t  oblique 
incidence. The methods developed here might also be extended to this case. 

2. Formulation of the interaction equations 
In  terms of a velocity potential g@/w, the problem is to solve 

CDzz + + CD, = 0 (1)  

CD,sinp+CDzcos/3 = 0, z = -ytanp, (2) 

in the wedge - y tan /3 < z < 0, subject to the boundary conditions 

where 2, y and z are longshore, offshore andvertical co-ordinates, respectively, and 
/3 is the beach angle. The nonlinear boundary conditions on the surface have been 
expanded in powers of CD and its derivatives, and transformed into equivalent 
conditions on the mean surface z = 0 ;  C{@} indicates third-order terms, which 
will be included in detail when needed. The surface elevation is given by 

2w " 6 = -- 1 CDt + {% 1 (a;)z-T ( V W  + . . . . 
w (4) 

We describe the incoming wave and its reflexion by a potential +$(y, z, t )  eiWt 
+ complex conjugate, and consider its interaction with an edge wave described 
by $x(z, y, z, t )  e@wt+ C.C. The dependence of $ and x on t will arise from slow 
variations due to the nonlinear interactions. The potentials $ and x must 
separately satisfy Laplace's equation in the wedge and the bottom boundary 
condition (2). The interaction equations are provided by the nonlinear condition 
( 3 )  on z = 0 and may be written to the appropriate approximation in the form 

$ 2  - (w2/lS> $ = ( X ?  X I -  (6) 

The quadratic interaction terms indicated by ($, x*)  arise because products of 
q5eiwt with the conjugate X*e-tiwt produce terms in etiwt, and so contribute to 
changes in X e W .  Similarly, products of Xe@wt with itself contribute to $eiwt and 
appear on the right of (6). The derivative X t  will be required in (5) and represents 
the growth of the edge wave. However, the growth rate is small and the further 
term xtt, which also arises from the left-hand side of (3), is of smaller order and is 
neglected. The t derivatives of $ are all of smaller order and are neglected in (6); 
however, $ still varies with time, reacting to the growth of x .  When the amplitude 
of x becomes relatively large, cubic products of X e W t ,  X e W  and x*e-Jiwt which 
also contribute to the subharmonic efiwt must be included on the right of (5). 

The consistency of the orders of approximation will appear in the further 
discussion. 
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3. The instability problem 
For the discussion of the initial instability, x is taken to be small compared 

with 4. The feedback of x on q5 described by (6) is neglected, and in ( 5 )  we take 9 
to be the undisturbed wave train q50(y,z). The cubic interaction term is also 
neglected, so ( 5 )  is approximated as 

(7) 

x1 = bE(y,z)coskx, E = exp(-kycosP+k.zsinP), (8) 

with k sin P = 02/4g, (9) 

satisfies (l), (2) and 
XIZ - (w2/4g) x1 = 0, 2 = 0. 

In  a successive approximation 

x = {b(t) E(y, Z) + x2 + . . .} cos k ~ ,  (11) 

(12) 

the correction term xz satisfies 
io db 

9 
Xzz-ksin/3x2 = -- Ez+(q50,E)b* 

on z = 0. Since E is a solution of the homogeneous problem, there is a bounded 
solution for x2 if and only if the right-hand side R of (12) satisfies the appropriate 
orthogonality condition 

This is similar to the well-known Predholm alternative theorem for the simpler 
eigenvalue problems of ordinary differential equations (Courant & Hilbert 1953, 
p. 359). A derivation of the necessity of (13) is given in the appendix. For our cases, 
the sufficiency can be shown by the explicit construction of a bounded solution 
for x2; the full details are not given, although one important aspect of the solution 
is discussed in $9.  

If  the term db/dt is omitted in (12), the orthogonality condition can not be 
satisfied; the forcing term (q50, E )  ‘resonates’ with the basic mode. This accounts 
for the inclusion of the time dependence and the growth of the edge wave mode. 
The orthogonality condition then provides an equation to determine b(t), 
namely? 

?!! j O0 E2dy = b* jom (q50, E )  E dy. 
g d t  0 

This shows exponential growth on a time scale u;l, where uo is the amplitude of q50. 
We return to the evaluation of the integral in (14) and discuss the dependence 

of the growth rate on B after deriving the full interaction equations. 

t The integrals in (14) and similar ones below are to be evaluated on z = 0. To simplify 
the notation, this will not always be indicated explicitly. 

18-2 
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4. The full interaction equations 
As the amplitude of x increases, the nonlinear coupling of (x, x) with 4 in (6) 

eventually becomes important. This stage is reached when # and (x, x) are of the 
same order; since $ = O(a,), x is then O(a8). The cubic term (x, x, x*) in (5) must 
also be included, since it is of the same order as (4, x*). With these coupling terms, 
there is the possibility that a final steady state is attained with x = O(a$). 

When the various orders of magnitude are incorporated, we may take a more 
formal expansion 

x = {aix(1)(y, z ,  T) + aix(2)(y, z ,  T) + . . .) cos kx, (15) 

(16) 

(17) 

(18) 

(19) 

At this stage the consistency of the terms kept in (5) and (6 )  is verified by the 
formal expansions (15) and (16). 

$ = a, $‘”(y, 2 ,  T) +a; p ( y ,  z, T) + . . . , 

~(i) - k sin px(1) = 0, 

x(E) - k sin px@) = ( - io/g) ~ 8 ’  + ($@), x(1)*) + (~ ( l ) ,  ~ ( l ) ,  x(l)*), 

$$;) - (w”g) $(U = ( p ,  $1)). 

where T = a,t. When these are substituted in (5) s n d  (6), with 02/4g = k sinp, 
we have 

The solution of (17) is taken to be the edge wave 

x ( 1 )  = B(T) E(y, 4, (20) 

where E is the exponential given in (8). After (20) has been substituted in (18) 
and the expressions for the quadratic and cubic interaction terms introduced 
explicitly (see Whitham 1976, equation (A 3), for the cubic terms), we have 

x(E) - k sin &C2) = - (io/g) EB, - i(+#i)E, + &i5(i)Ez + t[(qYi) - 4k sinpqW) El,) B* 

k3E3B2B*. 3 cos2p --- 
16 sinp 

The orthogonality condition (13) is now applied to the right-hand side of (21). 
After some manipulation (given in the appendix), the condition reduces to 

d B  - -  w3cosp 
5ik B2B*). 

dT  - w p  I ( lorn ’(1)E2 dy)  B* - 64 sin 2/3 (23) 

In  discussing the solutions, we revert to the unnormalizedvariables b(t) = a$ B(T) ,  
t = T/a ,  and q5 = The amplitude parameter a, factors out, of course, 
because the terms are of the same order in a,, and we have 

( ( k J ~ m  4E2dy)  
db w3 cos /3 
dt 49 sin2 /3 
-=- (24) 

This is the equation for b(t), where $ must be found from the boundary-value 
problem 

(25) 4,,+& = 0, -ytanp < z < 0, 
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#,sinB+$5cosP = 0, -y tanp  = z, (26) 

(27 ) 

The experimental work of Guza & Inman (1976) and others indicates edge-wave 
generation when the incoming wave is strongly reflected without much breaking. 
This is fortunate for the theory, since the solutions for # can be taken to be 
regular a t  the shoreline, and the rather imprecise use of singular solutions to 
represent breaking is not required for the situation of most interest. 

It is natural in this problem to specify the amplitude a, of the incoming 
wave train a t  infinity. However, since we now consider only regular solutions 
for #, an equivalent parameter is the amplitude of the original undisturbed 
solution #, at the shoreline. This will be taken as the a, of the above discussion, 
since it is the relevant parameter for comparing the various interaction terms. 
From (4), a,, is also the amplitude of the surface elevation [to first order. In  the 
full theory, a, and u, are related by a factor depending on B. With this choiceof a,, , 
the undisturbed potential is written as 

9,- (w2/g) # = - +ik2E2b2, z = 0. 

$0 = a,fJo(y, 4,  (28) 

where S,(y,z) is a solution of the homogeneous problem normalized to have 
X,(O, 0) = 1. 

5. Solution of the instability problem 
For the instability problem, b is taken to be small compared with u$ and the 

cubic term b2b* is neglected in (24). The coupling term on the right of (27) is also 
neglected and # is taken to be the undisturbed incident wave 9,. Then we have 

dbldt = yb*, (29) 

where 
~ 03cosp 
y = a,- 49 sin2 /3 Y(PL 

From (29), 

the complex amplitude b grows exponentially at a rate 

boundary-value problem 

d2b/dt2 = ydb*/dt = yy*b; 
proportional to a,. 

The function X,(y,z) is one of the eigensolutions X,(y,z), 0 < I < 00, of the 

= 0, -y tanp  < z < 0, (31) 

S,sinp+S5cos/3 = 0, - ytanp  = z, (32) 

s,-rs = 0, z = 0. (33) 

At present only the solution for I = I ,  = d / q  is required, but we use the extended 
notation in discussing the solution since the inhomogeneous problea for # will be 
solved later by an integral over the continuous spectrum 0 < I < 00. The normali- 
zation is chosen to be X,(O, 0) = 1 in agreement with (28). 

For arbitrary p, S,(y, z )  is known in terms of contour integrals (see Stoker 1957, 
chap. 5 ) ,  but we fkd  more explicit results by taking the special values /3 = n-/2N, 
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N = integer, where the solution is in fact the sum of exponentials (Hanson 1926). 
These values of ,8 are sufficient for our purposes, since the variation of y(P) and 
other integrals required later is not very great. 

For /3 = n-/2N, a form of the solution given by Friedrichs (1948)  is particularly 
useful here. It is 
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where En = ienri", n = 0, ..., N ,  

and V may be taken as a closed contour around the poles. On the surface x = 0, 

These may be expanded as sums of exponentials by taking residues at the poles. 
However, very conveniently, the integral we need in ( 3 0 )  takes the form of a 
Lsplace transform of X,(y, 0) ,  and (36) is the inverse transform. From ( 3 6 )  the 
transform is 

k tN C, = k jOm &(y, 0) exp ( - 2ky  cos p) dy = 
z ( c - c O )  * - -  ( t - c N )  

with ( = 2k cos BIZ. This can be expressed as 

C, = { 2  cos /3( I - mt,) . . . (1  - mtN)>- l ,  

m = 1/2k cos p. 

( l - m [ j ) ( l - m ( N - j )  = 1 - m ( ( j + + ~ ) + m 2  

where 

Since ( N - j  = (T and = 1, we have 

= (m--(j)(-tN-j), 
so the alternative form 

C, = ( 2  cos /3(m - 6,) . . . (m - tN)]-l, m = 1/2k C O S ~ ,  

can also be used. I n  particular, when I = I ,  = w2/g = 4ksinP we obtain 

r(P) = c, 
by taking m = m, = 2 tanp. 

The values of y for a range of ,4 are given in table 1. It is found that ylcos /3 is 
roughly constant, varying by less than 3 yo, so a satisfactory formula for 7 over 

( 4 4 )  
this range is 7 = 0.0i7w3a,/gtan2/3. 

The u m ~ l i t ~ e  at infinity 

As y + 00, the contributions of the poles in ( 3 4 )  decay exponentially, except for 
the terms from 6, = i and EN = -i. These give 

S,(y, z )  - (2D) - l  eizY+k + c.c., y + 00, ( 4 5 )  

where D = ( l - w ) ( i - w 2 )  ... ( i -wN-l ) ,  w = e"ilN. (46 )  
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P (deg) 
45 
30 
22.5 
15 
11.25 
9 
5 
0 

y x  1 0 2  
4.714 
5.710 
6.142 
6.483 
6.607 
6.664 
6.735 
6.767 

A ( p o p ) = t  
7.746 
6,833 
6-523 
6.303 
6.228 
6.194 
6.153 
6.135 

TABLE 1. The growth-rate parameter y and final run-up 
amplitude A for various beach angles /3. 

The product DD* contains all the 2Nth roots of unity except 1. Hence 

W2N- 1 DD* = lim = N .  
W-tl ( W -  1 )  ( W +  1 )  

( l -Wn) / ( l -w*")  = -wn, wN= - 1 ,  

Therefore D = N i  e-a(N-1) ni. (47) 

Moreover, from 

we deduce D/D* = ( -  1)N-lw&N(N-l) = e-&V-l)ni. 

The asymptotic behaviour (45) represents a wave of constant amplitude on water 
of infinite depth. With #, = a,Sl, the ratio of the amplitude a, at infhity to the 
amplitude a, a t  the shoreline is 

am/aO = N-?i = (2/3/7r)*. (48) 

The growth rate 7 can then be written in terms of a, instead of a,. 

Limiting c u e  /3 -+ 0, N -+ co 
In  this limit m, = 2 tan/3 N n/N, and from (38) we have asymptotically 

- - i n w + l +  -3,  
N w - 1  

where w = eni/N as before. In  the limit N .j 00, therefore, 

y = C, = (2e9-l = 0.06767. (49) 

The approach to this value can be seen in table 1. 
Similarly one can show in (36) that 

as /3 -+ 0 for fixed ly//3. This is the result that is given by shallow-water theory. 
The deep-water wave (45) with non-zero amplitude is lost owing to the non- 
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uniformity of the limit (50) as 1ylp-t 00, which corresponds to the non-uniform 
validity of the shallow-water assumptions in the deep water. However, for the 
integral in (30), this non-uniformity is masked by the additional exponential 
factor in that integral. If (50) is used with ZIP = lo/p = 4k, we have 

P m  

Thus the shallow-water theory gives the correct value for y in the limit p -+ 0. 

6. The solution of the inhomogeneous problem for <p 

To describe the further growth of the edge wave and its interaction with the 
given incident wave, we need the solution of the inhomogeneous problem (25)-(27) 
for 4. The general solution may be written as 

4 = a,Sz&, 2 )  +ib2(t) P(Y, 21, (52 )  

P,,+eZ: = 0, - y t a n p <  z < 0, (53) 

P,sinp+P,cosp = 0, -y tanp  = 2, (54) 

P,-loP = -frE2E2 = -~k2exp(-2kycos,8), x = 0. (55) 

where Zo = w2/g = 4ksinp as before, and P is a particular solution satisfying 

The part of the solution for 4 that represents the incoming wave train at  infinity 
must remain unchanged during the growth of the edge wave. Therefore, if P(y, x )  
is chosen to represent an outgoing wave, the coefficient of Rzo (which then contains 
all the incoming wave) must remain equal to the undisturbed amplitude uo. The 
relation between a, and the incoming amplitude *am at infinity is given by (48). 

We solve the problem for P(y, z )  as an expansion in the eigenfunctions Xz(y, 2 ) .  

It is easily shown from Green’s theorem that the Sz(y, 0) are orthogonal, and the 
normalization factor may be found from (45) with D given by (47). We have 

We assume that the eigenfunctions Sz(y, z )  are complete in order to derive a pro- 
posed solution for P(y,z); it  may then be verified directly that the proposed 
solution satisfies all the requirements. 

The right-hand side of (55) is expanded as 

where 

When P(y, z )  is expanded as an integral of the Xz(y, z )  over 0 < I < co, we deduce 
from (55)  and (57) that 
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In  (as), the path of integration is indented in Im I > 0 around the pole a t  I = I , ;  
this ensures that P represents an outgoing wave at infinity. With this choice, it 
follows from (45 )  that 

(60) 
P(B) m/, 0) ik 20" exp ( - ill)?/), Y + a, 

where P(P) =.2NCz0. 

From (45) and (60), we have 

a, - kpb2 
2 0 "  

exp (iwt -d,y), y -+ 00. (62) a, 
2 0  

$eiwt N - exp (iwt + dog) + 

It should be noted that the transform C, required in the expression for P(y, z )  
is the same as the one discussed in the last section and given in (41). In  the 
interaction equations, we again are fortunate; only an integral of P(y,  0)  is needed 
and this can be reduced to an integral involving C, without having to evaluate 
(59) in further detail. 

7. Solution of the interaction equations 
The differential equation (24) for b can now be completed with # given by (52).  

We have 
(63) 

The expression in terms of C, follows from (59) and a further use of (58). 
For small b the term in b2b* is neglected in (63) and we have the initial growth 

discussed in 0 6.  When the cubic interaction term is included b grows to the final 
steady-state value 

If p is expressed as - p  - ia, and k = w2/4g sin /3 is introduced, then 

b = bf = (ya,/ipk)t. (67) 

where 

u = NCfo = Ny2 ,  (70) 
and PIOm denotes the principal value. Here b is the amplitude of the potential x.  
Owing to the factor e*iwt in the complete velocity potential, the surface elevation 
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P y x  1 0 2  u x  103 p x 103 A (sao/02)-t 
45O 4,714 4.444 2.550 7.258 
30" 5.710 9.781 9.059 5.853 

TABLE 2. Values of the various parameters for /3 = 45" and 30". 

5 in (4 )  has amplitude 9 lbl . The results are usually expressed in terms of A ,  the 
difference between the maximum and minimum run-up on the beach. This is 

During the growth of the edge wave, the coefficient a, - kpb2 of the reflected 
wave in (62) drops below that of the incident wave, as energy is supplied to the 
edge wave. In  the final steady state it approaches 

a, = a, - kpb; = (1 -py/i,u) a,. 

From (61) and (70), py  = 2a.  Therefore 

p-zcr 
a, = - 

p + ia 
The reflected amplitude la,] returns to a, as the edge wave reaches its steady state, 
but there is a change of phase. 

= ny2/2/3 
follow immediately. From (41), the quantity p may be written as 

The values of y for various ,8 have been given in table 1 and those for 

(73) 
5 1 m dm p = -  

6 4 s i n 2 ~ - 8 ~ c o ~ ~ / 3 ~ ~ ~  ( m - m o ) ( m - ~ o ) z . . .  (w,-&)~' 

where m, = 2 t anb  as in (43). There appears to be no simple way of evaluating 
(73) and, apart from the limiting case P --f 0, we had to resort to partial fractions. 
This becomes tedious as N increases. However, we give the results for B = in 
and 4.. and the asymptotic behaviour for small /3. In  the next section, a further 
modifying effect is included and the value of p is no longer required to determine 
the final amplitudes bf and A .  

For /3 = in and Qn the results are given in table 2, using (71) for A .  
The limiting value for y as /3 --f 0 was found in (49) to be (2e2)-l. Therefore 

a = Ny2  N n/8e4P = 7.193 x 10-3//3. (74) 

To find the asymptotic behaviour ofp in (73), it  is convenient to use the alternative 
form obtained from (38 )  rather than (41), so the factors appear as I I ( 1  -w&)~.  
In  the revised form, after a change of variable to M = mlm,, the integral is 
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As m, = 2tan/3+ 0, 

Hence the integral tends to 

A change of variable puts this in the standard form for the Ei function and we have 

= 5.882 x 10-3/p. (75)  

A -+ 5.397(ga,/w2)4, /3 + 0. (76)  

Finally, for the run-up amplitude (71),  these results give 

Again the asymptotic behaviour for p checks with the shallow-water result 
that can be found directly from (50). For then 

and the result follows from (69).  

8. The resonance conditions 
Guza & Bowen (1976) point out that edge-wave modes which are initially 

slightly off resonance may grow to a larger h a 1  amplitude. We consider the mode 
with wavenumber k related to w by 

k sin /3 = w2/4g - Xa,, (77)  

where X is an adjustable parameter. Then there is an extra term Xu,~( l )  on the 
right of (18) and this leads to an extra term - (iXg/w) a,b on the right of (24). The 
amplitude equation (63)  becomes 

where 

db oscosp 
Z - 4gs in2~ 

-- {ya,b* - iKa,b - i,ukb2b*}, 

4g2 sin2p ~ 

w4 cos p K =  K .  

For the initial instability, 
dbldt cc ya,b* -iKaob, 

d2b/dt2cc (y2 - K ~ )  ug b. 

The growth rate is greatest for perfect resonance K = 0, as expected. 
However as the amplitude increases, we have 

db w 3 c 0 s p  
-=- {(ya,-crkb2) b* - i ( ~ ~ , - p k b b * ) b } ,  
at 49 sin2 p 
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where p has been set equal to - p  - icr as before. It is easy to show that the final 
steady amplitude is a maximum when 
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K = pkbb*/a,, lcb2 = ya,/cr. (83) 

The second term proportional to b in (82) may be interpreted as a frequency 
change. As the nonlinear term pbb* becomes important, this frequency change 
due to the edge-wave self-interactions will detune the actual frequency away from 
resonance. If this is corrected by the adjustment in K, the system effectively 
remains on resonance for maximum effect. Thus the final amplitude is greatest 
for the conditions given in (83). The second term proportional to b* in (82) may 
be viewed as the growth term and the steady state is reached when its coefficient 
is zero as in (83). It may also be noted that the phase difference arg b is zero in the 
optimal case, whereas it is not so in the case K = 0. This is also related to the phase 
difference found in (72) for the reflected wave. In  the optimal case, kb? = ya,/r 
and a, = - a,. As the edge wave develops, the coefficient of the reflected wave in 
(62) changes from a, to exactly - a,. This is optimum for energy transfer. 

Since (r = Ny2, the final values for b and A are now 

In this modified case, the integral in p is no longer required to determine A ,  and 
the results for a full range of p are given in table 1. The limiting value is 

A detailed discussion of experiments and a comparison with theoretical results 
are given by Guza & Inman (1975) and Guza & Bowen (1976). The appearance of 
edge waves depends strongly on the parameter 

ei = w2a,/gtan2p 

for the incident wave. For typical values p x 4"-7", a, M 2-6 em and 27r/w NN 2-4s, 
edge waves were observed for ei ranging roughly from 0.8 to 2.0. The lower limit 
is associated with amplitudes sufficient to overcome viscous dissipation and to 
introduce strong enough nonlinear effects. The value eJ = 1 corresponds to the 
beginning of breaking but there is appreciable reflexion until eg = 2, which is 
taken to be the value for the incoming wave to be dissipated in breaking with no 
reflexion. The production of edge waves by this mechanism seems to be strongly 
linked to reflective conditions. Although these limits on e$ are not included in the 
theory, indeed ei 1 is a formal requirement, the dependence on a,, o and p seems 
to be qualitatively correct for the range in which edge waves are produced. 
Experimental values of the run-up for a typical case, period 2r /w  = 2.7s and 
beach slope ,13 = 6", are given in table 3. 

Apart from the first entry, which is a t  the lower limit for the appearance of 
edge waves, the comparison with (76) or (86) seems reasonable in view of the 
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a0 (cm) 1.8 2.0 2.5 3.0 4.0 

A (em) 40 80 100 110 130 

A(POlm-* 2.2 4.2 4.7 4.7 4.8 

TABLE 3. Experimental estimates of the run-up amplitude A vs. incident 
wave amplitude a ,  for p = 6 O ,  2nlw = 2.7 8. 

assumptions that ei be small and the beach be perfectly reflective in the theoretical 
analysis. 

9. Further study of the perturbation expansions 
We now examine the uniform validity of the expansion for the edge-wave 

solution x as y-tco. It is expected, in analogy with travelling edge waves 
(Whitham 1976), that a non-uniformity in the expansion of x as y + co leads to a 
modification in the rate of decay of the edge wave’at sea. 

To find the appropriate modifications we consider again equation (21) for the 
determination of x@). Equation (21) is of the same type as the one discussed by 
Whitham (1976), and the same arguments apply here. The result relevant for this 
discussion is the asymptotic behaviour of ~ ( 2 )  as y + co. The first-order contribu- 
tion comes from the first term in the forcing function for (21) and is given by 

x@) = - [ ( iw/g)  B + ZB] (y tan/? + z )  E + O(E). (87) 

Equation (87) shows that $2) is not uniformly O(21)) as y -+ co; therefore the 
expansion 

x = at B exp ( - ky cosp + kz sin/3) cos kx ei@t -ao - - +I? (y tan /? + z )  eiwt I 
+c.c. (88) 

is not uniform as y + co. However (88) is recognized as the Taylor expansion of 
the function 

x = &B(T) exp ( - ~cy cos/?+ kzsinp) cos kxexp iwt -ao - - +Z (y tan/?+z) 

{ r;; ) 

1 
+c.c., (89) 

which is the uniformly valid form. This form can be justified using the method of 
strained co-ordinates; the modifications are minor but obscure the main steps 
and will not be repeated here. In  the uniform expansion (89) the function BB-l 
gives a dependence of the phase on the offshore co-ordinate, while the term in Z 
leads to a modification in the rate of decay offshore. 

When the shallow-water theory is used to calculate the nonlinear correction 
to the phase the same anomalous behaviour as was found for travelling edge 
waves (Whitham 1976; Minzoni 1976) is present. The arguments used in that case 
apply to the present situation, and for a depth distribution of the form h(y)  = /?y 
for 0 < y < ZI, h(y) = h, for y 2 b,, the change in phase is given by 

a,, wg-lBB-l /?(y - Zl)/hl 

{ (“b“,” ) 
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and the change in exponent by 

A .  A .  Minxoni and G .  B. Whitham 

%lP(Y - Wh. 
These are linear in y, and are in qualitative agreement with the behaviour (89) 
found using the full nonlinear theory. 
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Appendix 
The orthogonality condition (13) for the problem 

~ , , + ~ ~ , - k ~ x  = 0, 

X,sin/3+X2cos/3 = 0, 

-ytan/3 < z c 0, 

-y tanp  = z, 

xz-ksin/3x = R, z = 0, 

is found by applying Green's theorem to x and the solution 

E = exp(-kycos/3+kzsinp) 

of the homogeneous problem. We have 

0 = l/ (EV2x - xV2E) dy dz 

where B and T indicate the bottom and top surfaces. Since the normal derivatives 
of both E and x vanish on the bottom surface, and 

x, = ksin/3X+ R, E, = ksin/3E 
on z = 0, we have ST ER dy = 0. 

This relation is applied to the right-hand side of (21). The contributions of the 
& = s t  term, proportional to B,, and the third term, proportional to  B2B*, are 
immediate; the term B* requires manipulation. To ease the notation the super- 
script on qV1) will be dropped as in (25)-(27). We need to simplify 

I = - J  ~ + , E , + + z ~ , + ~ [ ( + , - 4 k s ~ ~ ~ ) E l , } E ~ ~ ~  

First substituting E, = - k cos /3 E and E, = k sin ,8 E, we have 

I = Jo* {kcos/3+,+$ksin/3+,- &Q,+ 2k2sin2/3+} E2dy. 
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From (25), $, = - $,,. Integration by parts is then used to eliminate y derivatives 
of qJ and we have 

m 
I = - [I&, + 2k cos @$],=,, + (4k2 cos2 @ + 2k2 sin2@) 1 $E2 dy 

0 

+ @ sin BIOm qJs E2 dy. 

From the boundary condition (27) with w2/g = 4ksin@, 

therefore 
$z = 4k sin @$ - $ik2E2B2; 

I = - [ ~ $ r + 2 J e ~ o s ~ $ ] u ~ o + ~ k 2 ~ o m $ E ~ d y - - f i k ~ s i n ~ ~ o m  E4dyB2. 

Using both (26) and (27) at the origin, we have 

$, = - qJz cot @ = - 4Je cos @$ i- @k2B2 cot @ 
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